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Abstract 

The need for more reliable travel time in urban areas in order to provide better transport 
service to the community has attracted many studies to model travel time reliability and 
variability. The travel time distribution is basic knowledge for this modelling, and studies to fit 
continuous parametric distributions to travel time distribution have been conducted since the 
early 1950s. Two sets of empirical travel time data collected by GPS equipped vehicles in 
Adelaide indicate that travel time distributions are positively skewed and have long upper 
tails. The Burr distribution has been found to provide a good fit to the data. Utilising the Burr 
distribution properties and the Burr regression technique, this paper models the Adelaide 
urban arterial travel time variability by considering traffic variables such as link length, 
congestion index and degree of saturation. This study suggests how to fill some current gaps 
in travel time variability modelling, especially for urban arterial roads. It should also be useful 
for further travel time variability studies such as the valuation of travel time variability effects. 

 

1. Introduction 

Travel time is one of the most important variables in assessing traffic systems performance. 
Both travellers and traffic engineers would like to have high quality traffic performance 
including short travel times, as a result, there are many traffic demand management 
initiatives that have been implemented to achieve this goal. However, traffic systems are 
complex and have a stochastic nature, for example short and long incidents can disrupt 
performance and lead to high travel time. On a daily basis on urban arterial roads, the 
fluctuation of demand and supply will also greatly affect the traffic performance in general 
and the travel time in particular. 

Given the need for more reliable travel time in urban areas in order to provide better 
transport service to the community, the variability of travel time by time of day, day of week 
or even due to the seasonal factors has attracted many studies. Those studies have 
modelled and assessed the travel time variability both in urban arterial roads and freeway by 
fitting continuous parametric distributions such as Normal and Log Normal distribution to 
travel time distribution (Faouzi and Maurin, 2007). Having the best fit of distribution, the 
variability of travel time can be measured by using its properties such as the standard 
deviation and the coefficient of variation.  

Given the rapid development of traffic data collection techniques, the recent studies not only 
model the travel time variability but also the relationship between the travel time variability 
metrics, the traffic parameters such as link length, traffic flow, capacity, congestion index and 
also the occurrence of incidents using the regression technique (Li et al., 2006, Eliasson, 
2006, 2007). Those studies have significantly increased the insight about the nature of the 
travel time and the possible factors that might influence its variability.  

Travel time variability metrics that measure the dispersion of the actual travel time from the 
preferred travel time data have been introduced. However, there is a subjective judgment in 
selecting the preferred travel time. Some studies that assume travel time variability data are 
symmetric have used the mean travel time as the preferred travel time and the standard 
deviation as the travel time variability metric. Other studies have suggested that travel time 
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data are skewed and have a long upper tail, have tended to use the median (50th percentile) 
travel time and difference between the 90th percentile and the 50th percentile (quantile range) 
as preferred travel time and its variability respectively (Lint and Zuylen, 2006). 

Most previous studies assumed that the Normal and Log Normal distributions are the best fit 
distribution to the travel time data, even though recent travel time studies have suggested 
that the travel time variability distributions are more likely to have long tails and very positive 
skew. Susilawati et al. (2010) confirmed that the Burr distribution has been found to provide a 
good fit to the empirical travel time data collected at two urban arterial roads in Adelaide.  

The burr distribution has two parameter, c and k respectively. It has been widely used in 
reliability engineering and actuarial science. It was found the c parameter of the Burr 
distribution give shape of the distribution (the lower value of c the sharper fall of cdf curve). 
Previous studies also found that the Burr distribution is very sensitive to the c parameter, 
consequently this parameter plays a very important role in the distribution properties. The 
closed form and algebraic tractability of this distribution provide flexibility in shape of the pdf. 
The closed form makes the calculation of its percentiles easy to do. Once the c and k 
parameters have been estimated, the percentile can be estimated easily as well. Thus, this 
study investigates the travel time variability of two urban arterial roads in Adelaide by utilising 
the properties of Burr distribution. 

In corresponding to the factors that might affect the travel time variability, it has been shown 
that the traffic variables play an important role in influencing the travel time variability. Recent 
studies by Eliasson (2006), Peer et al. (2009) and Black and Chin (2009) developed either 
linear or non linear travel time variability formulas which were formed by travel time variability 
metrics including the standard deviation and coefficient of variation and the traffic variables. 
Those studies suggested that the link length, free flow speed and capacity are the most 
important factors in travel time variability. Given the consideration that the c parameter 
shapes the Burr distribution density function and determine the Burr distribution’s properties 
including the mean, median and percentiles this study therefore observe the influence of the 
traffic variables on the c parameter using the Burr regression technique. The Burr regression 
technique suggested that the c parameter allows to vary with the explanatory variables (e.g 
speed, volume, capacity, degree of saturation). This study therefore replaces the c 
parameter with the exponential function of degree of saturation data and used this function in 
parameter estimation. It was found that the proposed technique allows to gain insight the 
influence of degree of saturation associated with the shape of the burr distribution and can 
be also useful for further data analysis in corresponding to travel time variability and reliability 
valuing.  

 

The next section reviews the past studies about the travel time variability modelling and how 
those studies estimated the influence of the traffic variables to the travel time variability. The 
third section discusses the Burr distribution and its properties and how to maximise these 
properties to develop the travel time variability metrics. This section also reviews the Burr 
regression technique and how to incorporate this technique to the travel time variability 
modelling. The fourth section is about the study area, travel time data collection and briefly 
discuss about the Sydney Coordinated Adaptive Traffic Systems (SCATS) data extraction. 
The fifth section is data analysis that covers the utilisation of SCATS data in this modelling 
and the discussion of the data analysis. The last section provides conclusions and directions 
for further research. 

2. Travel time variability modelling 

Travel time is the product of the complex traffic systems varies across time of day and day of 
week (Oh and Chung, 2006, Emam and Al-Deek, 2006, Zhang et al., 2007). Day by day 
travel time studies have confirmed that daily travel time generally has two distinct peaks 
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which are morning peak (e.g. between 7 and 9AM) and afternoon peak, perhaps 4PM to 
7PM (Zhang et al., 2007). Those studies also proven that Monday and Friday travel time 
pattern differ to other weekdays travel time pattern. Given the same period of time, the 
weekend travel time is much different to the weekdays travel time (Emam and Al-Deek, 
2006). More interestingly, the holiday season travel time commonly also differs from the non 
holiday season travel time, suggesting that seasonal factors also have influence. 

In recent times there have been several studies about travel time variability, which have 
quantified not only the variability but also considered the factors that might contribute to 
travel time variability. The impact of variability on traveller behaviour is also of interest. How 
variability affects traveller trip management such as departure time, route and mode choices, 
and how the variations may influence the quality of traffic performance can be explored using 
state preference (SP) and reveal preference (RP) surveys. 

Initial research used the normal distribution properties such as mean and standard deviation 
to measure travel time variability. To investigate the role of traffic variables on travel time 
variability, previous studies develop models of the mean and standard deviation as functions 
of those traffic variables. For this modelling method, multiple linear regressions is the most 
commonly used technique because it is easy to apply yet can deliver good results. Back in 
late 1970s, the studies by Herman and Lam (1977) in Detroit, Richardson and Taylor (1978) 
in Melbourne Australia and Polus (1979) in Michigan can be considered as the pioneer 
studies on travel time variability. Those studies used similar techniques to collect travel time 
data and built simple linear regression models of the variability. Herman and Lam (1974) 
presented statistical analysis for to and from work trip times on 25 routes in Detroit, collected 
over 20 months. Each trip time was the sum of stop time and cruise time and it was found 
that the trip time was linear in both stop time and cruise time. This study found that on 
average from work trip time data are longer than to work trip time data. The to work trip time 
histogram  tended to follow a normal distribution while from work trip time histogram was 
more like a uniform distribution. However, as this study did not conduct the goodness of fit 
test, for simplicity purposes, they assumed all the travel time distributions followed the 
normal distribution. Moreover, a model of the mean, standard deviation and coefficient of 
variation was been developed using the power and linear regression function. Interestingly, it 
was found that the linear function gave better results than power function.  

With a similar objective to the Herman and Lam’s work, Polus (1979) also collected the travel 
time data in Michigan. The main purpose was to indicate the degree of travel time reliability 
by observing the variabilities in travel times. Instead of directly using the standard deviation 
as the travel time variability metrics, he suggested that the travel time reliability function is 
the inverse of the standard deviation. In this way, the more reliable travel time routes would 
have a larger value of the reliability index, 

Richardson and Taylor (1978) collected and analysed longitudinal travel time data in 
Melbourne. They assessed the correlations between travel times on successive sections of 
the study route, and developed relationships between the travel time variability and the level 
of congestion. They concluded that travel times on a link were independent of those on other 
links along the route, and that the observed travel time variability might be represented by a 
lognormal distribution 

In parallel to rapid development of data collection techniques and the ongoing growth in 
computer capability to deal with huge data sets during the last decade, there are number of 
studies that have looked in more detail at travel time data. The automatic vehicle 
identification (AVI) technology allows the traffic engineer to record the time when a vehicle 
passes a start point and the time when the vehicle leaves the study area. The time 
differences between start and end times can be used as the travel time between these 
points. In-vehicle GPS systems have transformed travel time collection techniques. GPS 
equipped taxi and bus fleets have become major sources of travel time data. The travel time 
data allow the traffic engineer to obtain not only vehicle to vehicle travel time variability but 
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also different routes and different time period travel time variabilities, due to the ability of this 
technique to cover wide areas in urban road networks. Vehicle to vehicle travel times vary 
according to the speed limit and driving style. In the urban arterial context, the vehicle to 
vehicle travel time differ greatly due to the actual times when the studied vehicles pass 
through the intersection. Vehicles that encounter delay (e.g. at traffic signals) will have higher 
travel times than those that do not encounter delay.  

These types of travel time measurements have been used in recent studies. Eliasson (2007) 
forecasted the time of day and day to day travel time variability on a Stockholm bypass road 
by utilising travel time data collected thorough an automatic camera system. The travel time 
data collected from 6AM to 10 PM, and were then analysed in 15min interval. This study 
used a nonlinear regression model to seek the relationship between the travel time, free flow 
travel time, speed and Standard Deviation of vehicle to vehicle travel time data across the 
day. This study used the following equation based on a volume delay function:  

� �  � � ���� � �	
��� � 
� � �� � � �
��

� ���
        Equation 1 

where 
t=actual travel time 
t0 = free flow travel time 
L = link length 
  
λTOD and λ SPD are dummy variables representing time of day and the speed limit,  

λ is a constant, and α, γ and ω are estimated parameters.  
 

Eliasson (2007) also discussed the travel time pattern in the study area. He found that travel 
time is less skewed under higher congestion conditions and the travel time covariance is 
relatively small. It is then possible to directly sum link travel time variances in order to get the 
route travel time variance. 

A similar technique has been used for analysing the travel time variability in Peer et al. 
(2009). This study aimed to forecast travel time variability for use in cost benefit analysis of a 
transportation project. Peer et al. (2009) also assessed 15 minute interval travel time that 
was derived from speed data collected by loop detector. The speed data then can be 
converted to travel time data used piecewise-linear-speed based (PLSB) method. This study 
used 255 working days travel time data in its analysis. Similar to Eliasson’s model, Peer at al 
also used a regression technique. However, instead of modelling the relationship between 
standard deviation and speed and travel time, this study focused on the link between the 
standard deviation, delay and the V/C ratio. The fitted model was: 

� � �� �  ����� �   !"#$                        Equation 2 

     

� � 
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* � %&�* � ��'()&** � +,-&.*/      Equation 3 

 

where 
VCR = flow capacity ratio 
L=link length 
β=estimated parameter 

 

In the United Kingdom, a model of link and corridor travel time variability, using GPS data 
collected by individual vehicles for 34 routes in ten of the largest urban areas in England, 
was developed by Black and Chin (2007). The travel time data from each vehicle were then 
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grouped to 15-30 min interval data. Similar to previous methods that look at the relationship 
between the travel time variability and other traffic parameters, this study related the 
coefficient of variation of travel time variability (CVt) to the congestion level in the study area  

βα tt CICV =
          

Equation 4 

where tCI  is a congestion index, defined as 0/ ttCI t = , where t is actual travel time t0 is free 

flow travel time and α and β are estimated parameters. They first considered travel time 
variability at the link level, and then used standardised link travel times to develop a corridor 
travel time reliability model: 
 

39.002.116.0 −= LCICV tt                         
Equation 5 

where L (km) is the link length and -0.39 is an estimated parameter (the elasticity of CVt with 
respect to distance). 

A similar model was developed by Richardson and Taylor (1978), who showed that under 

certain restrictive conditions the theoretical value of β would be 0.5. 

Given the assumption that the day by day travel time variability can be treated as the time 
series data, Sohn and Kim (2009) used the autoregressive moving average-generalized 
autoregressive conditional heteroscedasticity (ARMA-GARCH) method to investigate the 
travel time pattern for road networks in South Korea. This study also tested the impact of the 
different combination of traffic and geometric condition that might influence the travel time 
reliability. It was found that the link width and congestion level play an important role in travel 
time variability. 

The question of serial correlation between travel times on individual links along a route is of 
interest, and there are a number of different results in the reported studies. Richardson and 
Taylor (1978) found no significant statistical eveidence of such correlation, and as indicated 
above, neither did Eliasson (2007). Faouzi and Maurin (2007) suggested how to treat serial 
correlation between link travel times if those times were log normally distributed. Nicholson 
and Nicholson and Munakata (2009) found evidence of strong serial correlation in a study of 
travel times on the Tokyo expressway network. 

 

2.1 Travel time variability metrics 

Given the definition of the travel time variability – the dispersion of the actual travel time to 
the preferred travel time – the mean is the commonly used preferred travel time while 
standard deviation, coefficient of variation and a quantile range (difference between the 95th 

or 90th and 50th percentile) are suggested variability metrics. The use of the 90th percentile is 
notionally justified by the implication that it allows an employee to possibly arrive late in the 
office twice in 20 working days. 

Some alternative travel time variability metrics have been proposed. Federal Highway 
Administration (FHWA) (2006) introduced a buffer time (BTt) to represent the additional time 

above the average travel time ( t ) required for on-time arrival. The buffer time is the 

difference between the 95th percentile travel time (t95) and the mean travel time: 

ttBTt −= 95           
Equation 6 

FHWA (2006) also established a travel time reliability index (Planning Index, PIt), which is the 
ratio of the 95th percentile travel time to the ‘ideal’ travel time, taken to be the free flow travel 
time (t0): 
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095 / ttPI t =           
Equation 7 

Additionally, van Lint and van Zuylen (2005) proposed the so-called skew-width methods. 

The skewness of the travel time 
skewλ  is defined as the ratio of difference of the 90th 

percentile ( 90t ) and 50th percentile ( 50t ) travel times and the difference between 50th 

percentile and 10th percentile ( 10t ) travel times. The width of travel time 
varλ  is defined as the 

ratio of the differences of 90th percentile and 50th percentile travel time and the 10th percentile 
travel time. The equation of the skewness and the width travel time metrics are as follows; 

1090

5090

tt

ttskew

−

−
=λ

         

Equation 8 

 

50

5090var

t

tt −
=λ

         

Equation 9 

 

From the review, it can be seen that the existing travel time variability model use different 
approaches as well as different shapes of a parametric distribution. There is commonality in 
the research in the use of the standard deviation, congestion index, link length and the mean 
of travel time to measure variability. Despite the fact that previous studies have attempted to 
model travel time variability and examine the contribution of each traffic variables to the 
travel time variability, most of this research has simply used the normal and log normal 
distributions and their properties in modelling travel time variability. There is still left room to 
study the best fit travel time distributions for travel time variability studies. Therefore, the next 
section discusses the use of the Burr distribution as a proposed travel time variability model.  

3. The Burr distribution and Burr regression technique 

Recent collected empirical travel time data exhibit positive skew and a long tail, and the 
normal distribution therefore does not really fit these data. Through exhaustive goodness of 
fit testing, using the eight years of continuous travel time data from the Adelaide database, 
Susilawati et al (2010) found that neither the Normal nor Log Normal distributions could fit 
the observed travel time distributions. Susilawati et al (2010) found that the Burr distribution 
fitted the empirical travel time data from Adelaide urban arterial roads and concluded that the 
Burr distribution could be used to represent the observed data. The next section reviews the 
Burr distribution as a proposed travel time distribution and the application of this distribution 
in reliability engineering and other reliability studies.  

The Burr distribution was developed by Burr (1942) for the express purpose of fitting a 
cumulative distribution function (cdf) to a diversity of frequency data forms covering a wide 
range of distribution shapes. It can also be used to model an unspecified distribution.  

In its basic form it has two parameters, c and k. The probability density function (pdf) f(x c,k) 
of the Burr distribution is 

)1(1 )1(),,( +−− += kcc xckxkcxf
       

Equation 10 

where x > 0, c > 0 and k > 0. The cdf F(x, c, k) is given by 

kcxkcxF −+−= )1(1),,(
        

Equation 11 
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but xm will only exist if c > 1. [If 

Based on previous research, the value of c plays a very important role in determining the 
shape of the cdf curve -the lower the value of c, the sharper 
sharper fall of cdf curve, c = 2 shallower fall of curve)
sharper the initial rise of the curve
initial rise of curve) as shown in figure 1
skewness, for k more than one mean
is left skewed. See Figure 1 for some alternative Burr distribution shapes.

Figure 1: Burr distribution cdf for different c and k parameter
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The distribution has some interesting statistical properties (Tadikamalla, 1980). In the first 
th moment of the distribution (E(xr)) will only exist if ck > r, in which case

)1+

      

is the mathematical Gamma function. In addition, the modal value 

      

> 1. [If c ≤ 1, then the distribution is L-shaped.] 

research, the value of c plays a very important role in determining the 
the lower the value of c, the sharper the fall of cdf 
, c = 2 shallower fall of curve) while the lower the k parameter

curve (k=2, sharper the initial rise of cdf curve
as shown in figure 1. Interestingly, the k parameter can also define the 

k more than one means that the distribution are right skew and less than one 
See Figure 1 for some alternative Burr distribution shapes. 

: Burr distribution cdf for different c and k parameter 
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, 1980). In the first 
, in which case 

 

Equation 12 

is the mathematical Gamma function. In addition, the modal value xm is given by 

 

Equation 13 

research, the value of c plays a very important role in determining the 
cdf curve (c = 1 the 

while the lower the k parameter, the 
curve, k = 3, shallower 

. Interestingly, the k parameter can also define the 
ion are right skew and less than one 
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Interestingly, the wide range of possible shapes of the Burr distribution and its well behaved 
algebraic properties make it is useful for fitting many types of data and for approximating 
many different distributions (Zimmer et al, 1998). For instance, the Weibull distribution is 
specific type of Burr distribution where one of the parameters is gamma distributed. When 
the k parameter is one then the Burr distribution is a special case of log logistic distribution. 
The versatility and flexibility of the Burn distribution makes it quite attractive as a tentative 
model for data whose underlying distribution is unknown 

The Burr distribution is very popular distribution and has gained a strong interest in reliability 
engineering for modelling lifetime data and monotone failure rates. A number of reliability 
engineering applications have utilised it to model the product life process (Abdel-Ghaly et al., 
1997). Also, Shao et al. (2004) studied the models for extended three parameter of Burr 
distribution and used this distribution to model extreme event with application to flood 
frequency. The three parameter Burr distribution or Singh Maddala distribution is the 
extended version of the Burr distribution which has a scale parameter for the independent 
variable x. The scale parameter defines the point where the data is most concentrated. For 
purposes of simplicity, the scale parameter can be used to estimate the median of the data. 

The distribution has an algebraic tail that is useful in modelling less frequent failures 
(Soliman, 2005). As its cdf can be written in closed form, its percentiles are easily computed. 
To compute percentiles for the Burr distribution, use the following approach 

Given the CDF defined by equation (10), for a given value of F(x, c, k), the percentile P, i.e. 

kcxP −+−= )1(1
        Equation 14 

∴  
P

x kc

−
=+
1

1
)1(  

∴  1)1( /1 −−= − kc Px  

∴  c k

P Px 1)1(
/1 −−= −

 
 

 the median is then   

c k
x 12

/1

50 −=
        

Equation 15
 

     
 

 90th percentile is  

c k
x 110

/1

90 −=
         

Equation 16 

 

10th percentile is 

c

k

x 1
9

10
/1

10 −






=
        

Equation 17

  

On the basis of equations 15, 16 and 17, the next section indicates how to compute current 
travel time variability metrics directly from the Burr distribution parameters. 
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4. Proposed travel time variability metrics 

Preceding section reviewed the travel time variability modelling and metric development and 
also the properties of the Burr distribution. Equation 4 and 5 show that the 50th percentile and 
the 90 percentile are easy to obtained once the parameter c and k are known. Since the 
travel time variability can also be measured as the dispersion of the preference travel time 
and the actual travel time, this study used the similar method used by Lint and Zuylen (2005) 
to develop the travel time variability metrics. According to Lint and Zuylen (2005), 0123 is the 
ratio between the difference of the 90th percentile and the 50th percentile and the 50 
percentile. This metric is useful to illustrate the travel time dispersion. Replacing the 90th 
percentile and the 50th percentile in the Lint and Zuylen (2005) metrics, skewness of travel 

time’ (λskew) and ‘width of travel time’ (λvar) in terms of Burr parameters is possible, given that 
these two metrics are both defined in terms of percentiles. Therefore we obtain refined travel 
time variability metrics as below. 

 

1090

5090

tt
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−

−
=λ  

50

5090var

t

tt −
=λ  

Given x50 and x90 as defined by equation 15, 16 and 17, it follows that 
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Equation 18 

and 

 

c k

c kc k

12

12110

/1

/1/1
var

−

−−−
=λ

       

Equation 19 

5. The travel time data database 

This study used two of the sets of longitudinal travel time data in the database. The data was 
collected by using GPS during regular journey to work trips for different commuters, each of 
which started at about the same time of day and with similar driving behaviour.  

The two sets of travel time data are  

(1) the Glen Osmond Road (GOR) data set, including 16 successive links from Glen Osmond 
to the Adelaide CBD. The length of links vary between 150 m to 600 m with speed limits of 
either 50km/h or 60km/h, and 

(2) the South Road (SR) data set, which is the collection of travel time from a major freight 
corridor in Adelaide. This route serves the southern suburbs of Adelaide metropolitan area. 
The links length of this route also varies from 165 m to more than 4000 m and the speed limit 
varies between 40 km/h (because of road works) and 80km/h.  
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Figure 2:  shows each of these routes on a map of the Adelaide metropolitan area. 
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Using maximum likelihood estimation, the three parameters (c, k and scale) of the Burr 
distribution were obtained. These parameters therefore can be used for calculating th 90th 

and 50th percentile and the λvar  . The three parameters and the variability of each links are 
shown in Table 1 (South Road) and Table 2 (Glen Osmond Road). 

Table 1: The Burr parameters and the link variability of South Road data set 

 

N/A : not available data due to the burr distribution did not fit the travel time data  

Link 
No 

Length 
(m) 

Parameter Percentile 

λvar 
free flow  

t0(s) CI k c scale 50th 90th 

1 2782 1.17 63.86 142.94 142.51 146.78 0.03 125.19 1.138 

2 213 0.10 44.03 10.34 12.14 17.63 0.45 10 1.214 

3 944 0.02 222.22 58.55 68.24 97.27 0.43 56.64 1.205 

4 1177 0.07 48.40 70.93 87.97 145.05 0.65 70.62 1.246 

5 710 0.09 76.58 41.66 45.90 57.51 0.25 42.60 1.077 

6 442 0.05 62.53 26.91 33.89 57.89 0.71 26.52 1.278 

7 1340 0.07 47.36 83.66 104.08 172.84 0.66 80.40 1.295 

8 3243 0.06 103.87 163.10 181.35 231.99 0.28 145.94 1.243 

9 745 0.07 56.33 35.17 41.84 62.62 0.50 33.53 1.248 

10 1965 0.04 223.44 89.02 97.05 118.59 0.22 88.43 1.098 

11 595 1.54 5.59 61.79 55.86 77.16 0.38 26.78 2.086 

12 3232 0.09 96.22 149.33 161.76 194.77 0.20 145.44 1.112 

13 322 0.00 23414 14.54 N/A N/A N/A 14.49 N/A 

14 592 0.03 47.03 30.28 51.02 171.59 2.36 30.45 1.676 

15 416 0.04 48.25 25.59 35.44 75.51 1.13 21.39 1.657 

16 393 52408 3.02 2124.2 51.33 76.42 0.49 20.21 2.540 

17 841 0.08 66.62 65.89 75.47 103.44 0.37 50.46 1.496 

18 2032 1.24 3.39 244.57 224.39 401.98 0.79 121.92 1.840 

19 871 N/A N/A N/A N/A N/A N/A 52.26 N/A 

20 761 4.34 3.37 190.73 113.34 171.58 0.51 45.66 2.482 

21 1209 0.02 124.19 75.22 94.64 161.32 0.70 72.54 1.305 

22 1590 0.78 5.35 264.35 282.74 454.65 0.61 95.40 2.964 
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Table 2 : The Burr parameters and the link variability of Glen Osmond Road data set 

Link No 
link Length 

(m) 

Parameter Percentile 
λvar

   CI 
c k scale 50 90 

1 1146 8.96 0.53 101.15 112.84 163.45 0.45 1.763 

2 1058 4.17 0.94 124.10 126.48 217.71 0.72 2.008 

3 458 N/A N/A N/A N/A N/A N/A N/A 

4 606 3.32 2.04 138.59 105.52 173.22 0.64 2.931 

5 331 N/A N/A N/A N/A N/A N/A N/A 

6 405 92.98 0.03 28.25 35.96 62.97 0.75 1.332 

7 165 27.74 0.06 11.44 16.99 42.57 1.51 1.545 

8 150 25.15 0.12 11.34 14.15 23.67 0.67 1.415 

9 311 53.94 0.07 23.50 28.16 42.82 0.52 1.280 

10 337 62.88 0.04 26.54 34.03 60.61 0.78 1.361 

11 165 N/A N/A N/A N/A N/A N/A N/A 

12 165 33.50 0.04 11.42 18.40 55.68 2.03 1.673 

13 152 29.16 0.05 10.84 16.73 45.85 1.74 1.673 

14 156 N/A N/A N/A N/A N/A N/A N/A 

15 153 19.05 0.06 12.48 22.13 83.64 2.78 2.012 

16 162 N/A N/A N/A N/A N/A N/A N/A 

N/A : not available data due to the burr distribution did not fit the travel time data 

It can be seen that the travel time variability metrics for both data sets do vary. The highest 
travel time variability is for SR data set is link 14 (2.36) while the lowest is for link 1 (0.03). 
On average the travel time variability for SR data set is about 0.6 which means that the 
dispersion of the travel time from the median 0.6 times median. On the other hand, the travel 
time variability for GOR data set is much more diverse than the SR data set. The highest is 

for link 15 with λvar equalling 2.78. This means that the travel time variation is almost triple 
the median travel time. Link 1 has the lowest travel time variability which is only 0.45 of the 
median.  

 
Figure 3 the scatter plot of Scale parameter and the median of the SR and GOR data  
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Using the results in Tables 1 and 2, Figure 3 shows the scatter plot of the scale and the 
median of the SR and GOR data sets. It clearly shows that there is a linear relationship 
between these two variables (with R2 =0.93). It can be suggested here that for purposes of 
simplicity the scale parameter of Burr distribution can be estimated the median of travel time. 

These tables also show that the travel times do vary link by link. Since the travel time data 
used in this study is the link travel time where the link lengths also vary, further data analysis 
to assess the role of traffic variables on travel time variability is conducted. There are two 
question arose. The first question is how the link travel time will likely affect the travel time 
variability. In order to answer the first question, a similar formula to that used by Black and 
Chin (2009) – Coefficient of Variation (CV) as a function of link length and congestion Index 

(CI) is adopted. Given that formula (see equation 5), the λvar is a function of the link length 
and the congestion index as a refined travel time variability formula is developed. To 
measure the congestion index, instead of using the mean as the denominator, the median 
(50th percentile) was using. 

Adopting the new proposed travel time variability metric, the link by link travel time variability 
and the congestion index modelling is tabulated in table 3. 

Table 3: Estimated Parameter for travel time variability modelling 

Parameter Description Value 

α constant 28.0913 

β1 estimated parameter for Congestion Index 0.7462 

β2 estimated parameter for link length -0.6373 

 

It shows that both link lengths give the negative value of the power function, while congestion 
index give the positive value to the λ

var. This result is quite different to Black and Chin’s 

research, but this may reflect the different natures of the two data sets 

The proposed method can be extended to investigate the influence of other traffic variables 
for further data analysis. However, for this model, the data analysis limits for just testing the 
affect of the link length on the λvar .  

A second objective of this research is to seek the role of the degree of saturation in 
influencing the c parameter. Before conducting further data analysis, there is a judgement 
required in selecting the degree of saturation as the main factor in this study. Based on the 
literature, it is found to be an important variable in determining urban traffic system 
performance. The degree of saturation gives the ratio of the capacity and flow. These 
variables then can be input into the travel time variability modelling.  

This paper does not discuss the method to obtain the degree of saturation and how to relate 
the SCATS degree of saturation data to the theoretical degree of saturation. The discussion 
about that issue can be found in Suksri e et al (2010). The degree of saturation data obtained 
from SCATS data of each link has been used as the covariates factors. Next section reviews 
the Burr regression technique and how to utilise this technique in the travel time variability 
modelling. 

6. Burr regression 

The Burr regression technique was firstly introduced by Beirlant et al. (1998) in related to the 
special case of the Burr distribution. It has been known for some time that the log logistic 
distribution is a special case of the Burr. Adopting the similar parameterisation as used in the 
log logistic regression, Beirlant et al. (1998) proposed Burr distribution parameterisations.   

Parametrization: 
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The shape parameter (c) is allowed to vary with y where y is covariate (dimensional 
vector)(Beirlant et al., 1998) 

Given the cdf of the Burr distribution 

)1(1 )1(),,( +−− += kcc xckxkcxf
       

Equation 20
 

then based on the first parameterization, the new cdf of Burr distribution is as follows 

     4 |)~7899:;, =:)>>. 

Since =:)> � exp :BC)>  can be termed as an exponential function of BC and � ,then replacing 
the c with the c(y)  the cdf becomes 

 

GH | )H  ~ IJKK :L, MH>,         MHN  �G
:OC)H> 
 

P:G, OC, ), L> � QRS:OC � )> � L � GQRS%OT�)/ � %� � GQRS%OT�)//U:LV�>
    Equation 21 

Where, 

k=shape parameter 
c=shape parameter 
x= travel time 
y = Degree of saturation 

 

Maximum likelihood estimation can be used for Burr regression parameter estimation by 
replacing the c with the exp :BC)>  expression. The maximum likelihood analysis can be done 
as follows: 

The likelihood function is 


:L, O|G> �  LW�G
:∑ OC)HWHN� > ∏ G�G
%OT)H/Z�

[�V GH
�G
%OT)H/\

L]�
WHN�                 Equation 22 

'W
:L, O|G> � W'W:L> � ∑ OC)HWHN� � ∑ ^�G
 :OC)H> � �_WHN� 'W:GH> � :L � �> ∑ 'W `� � GH
�G
%OT)H/aWHN�   

           Equation 23 

 

Then 

b'W 
 :L,O|G>
bL � W

L � ∑ 'W `� � GH
�G
%OT)H/aWHN� ,       Equation 24 

b'W 
 :L,O|G>
bOc

�  ∑ )HcWHN� � ∑ �G
 :OC)H>)Hc  'W:GH>WHN� � :L � �> ∑ GH
�G
%OT)H/ 'W:GH>
�VGH

�G
%OT)H/  �G
:OC)H>WHN� )Hc   

           Equation 25 

For illustrative purposes, this study merely applied the first parameterisation of Burr 
distribution for selected GOR and SR links. The SCATS degree of saturation data has been 
used as the covariate matrix (y) - representing the traffic variables. The Burr regression 
modelling result is given in Table 3 
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Table 4: Burr regression modelling for Glen Osmond data set 

Link No 
Parameter Burr Distribution Parameter Burr regression technique 

Log Likelihood 
test ratio 

cv*=3.8412 

c k scale k θ scale  

6 (GOR) 20.9046 0.0570 12.3585 0.1329 2.4435 11.4297 
Accepted 

(-2651.8) 

12 (GOR) 35.0420 0.0406 11.3570 0.1361 3.1132 10.3965 
Accepted 

(-2474.8) 

15 (SR) 44.5127 0.0560 25.6863 0.0347 0.0459 25.3426 
Accepted 

(-49.6138) 

20 (SR) 3.3591 4.7948 200.6249 0.0237 4.1639 54.2633 
Accepted  

(-1123.2) 

3(SR) 200.8478 0.0220 58.5894 0.1202 4.6466 59.8820 
accepted 

(-15366.1) 

22(SR) 5.4379 0.7124 261.3926 0.0356 3.0636 148.8896 
accepted 

(-1709.3) 

cv*=critical value at the 95th confidence level 

 

The result of the general form Burr distribution and Burr regression technique parameter 
estimation are shown in Table 4. To test the similarity of these two techniques the log 
likelihood ratio test was conducted. This result is promising as the value of k and scale 
parameters from both techniques are similar. From the log likelihood test, it was found that 
the Burr regression technique for selected links of GOR and SR perform well, as indicated by 
the p value of the log likelihood test. The p values are less than the critical value at 95th 
confidence level.  

The θ as the estimated parameter for degree of saturation data set is showing that for 
different link with different traffic condition gave different estimated variables. By assuming 
that the link which have higher variability index, higher congestion index might have higher 
degree of saturation, then this table can describe that behaviour. For example link 12 has 
higher variability and also has higher θ than link 6.  

According to the variability and congestion index values, the GOR data set may well 
represent oversaturated conditions. For undersaturated condition, the similar technique was 
applied for selected SR links. 

7. Conclusion 

The need for more reliable travel time has gained strong interest in international research. 
There are numerous studies that have suggested metrics to quantify the variability of travel 
time and have looked into the factors that might contribute to the higher travel time variability. 
Those studies suggested that the basic traffic variables were playing an important role in 
modelling the travel time variability and used the normal distribution properties as the travel 
time variability metrics. However, the recent empirical travel time data exhibit positive skew 
and long tails, and so are not well represented by standard pdfs such as the Normal 
distribution. This study therefore suggested refined travel time variability metrics by utilising 
the Burr distribution properties. From two sets of link travel time data collected in Adelaide, it 
was found that the link travel time variability does vary. The first hypothesis needed to test is 
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whether the link length is the main contributor to the travel time variability, the second is what 
congestion index role in modelling the travel time variability. The results confirmed the 
positive effect of the link length and the power effect congestion index, respectively, on the 
link travel time variability. This result is similar to the earlier research conducted by Black and 
Chin (2007).  

This paper gives an insight of the use of the Burr distribution properties to refine the current 
travel time variability metrics. This technique has been tested for selected links of the GOR 
and SR data sets. Under the 95th confidence level, the result of this proposed modelling 
technique is similar to the result of the general form of Burr regression technique. 
Interestingly, this proposed technique can be extended to investigate more traffic variables in 
related to the Burr distribution parameter. This new approach can be also used for further 
travel time variability modelling. 

Appendix 

Notation Description 

σ standard deviation 
λ constant 

λ TOD dummy variables representing time of day  
λ speed dummy variables representing the speed limit 

L link length 
t actual travel time 

t0 free flow travel time 

α estimated parameter 
γ estimated parameter 

ω estimated parameter 
β estimated parameter 

βij estimated parameter 

VCR flow capacity ratio 
CI congestion Index 

CV t coefficient of Variation 
BT t buffer time 

PIt planning Index 
t95 95th percentile travel time 

t90 90th percentile travel time 

t50 50th percentile travel time 
t10 10th percentile travel time 

t  mean travel time 

λ
skew

 the skewness of the travel time 
λ

var
 the width of travel time 

f pdf 
F cdf 

c shape parameter Burr distribution 

k shape parameter Burr distribution 
G(y) Gamma function 

xm mode 

P percentile 
x90 90th percentile Burr distribution 

x50 50th percentile Burr distribution 
x10 10th percentile Burr distribution 

y degree of saturation 
θ estimated parameter 
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