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Abstract 

While there are many journey planners in use around the world, the vast majority of them 
focus solely on optimising trips for the transit network, which is based on routes and 
timetables, or on optimising trips on the road network for drivers of personal vehicles. By 
integrating these two networks together into a single journey, the Multimodal Multiobjective 
Trip Planner (MMTP) in development at the Smart Transport Research Centre (STRC), 
Queensland University of Technology, can provide more flexibility to users on how they travel 
to their destination. 

The primary goal of this paper is to present an analysis of the computational performance of 
the shortest path algorithms that have been implemented for the MMTP. The algorithms that 
are used will be outlined, as well as the graph structures that they search. The method for 
integrating the two networks into a combined trip plan will be discussed. Results will then be 
presented from tests performed on the Brisbane transit and road networks. This will be 
followed by an analysis of these results, by comparing the performance of the algorithms for 
the different categories of journeys that could be experienced by the trip planner in practical 
use. 

1. Introduction 

The MMTP that is in development at the STRC has three main goals. They are: 

 True multimodal trip planning, combining public transport and private vehicle legs into 
a single journey via park’n’ride facilities. 

 Providing multiple objective choices, such as travel time, distance, cost and other 
quantifiable objectives. 

 The integration of real-time information, such as predicted travel times, incident 
information, and real-time transit updates, so that a more accurate trip plan can be 
calculated. 

The main focus of this paper is to analyse the performance of the MMTP for multimodal trip 
planning. This paper is continuing the work from Casey et al. (2012), which presented the 
data requirements and graph data structures in detail for the MMTP. 

This paper has the following format: First, the search algorithms that are used and the graph 
data structures that they search are presented. The method of integrating the two networks 
together into a combined trip plan is also discussed. Next, the testing methodology that is 
used for producing results is outlined. The computational test results are then presented, 
which is followed by an analysis of these results. Finally, conclusions for the paper are made 
and future work for the development of the MMTP is discussed. 

2. Algorithms and data structures 

The MMTP makes use of two main data sources: the Road Network and the Public Transport 
Network. The two graph networks are similar in the fact that they consist of a set of nodes 
and arcs that connect neighbouring nodes together, however they are different both from a 
conceptual point of view and for practical implementation purposes. This difference is 
because the nodes and arcs within the road network represent a physical entity that are 
geographically separated, while the nodes and arcs within the public transport network 
represent temporal events and the possible connections allowed between these events. 



2.1 Road Network 

The graph data structure that is used in the MMTP for the road network is depicted in Figure 
1. Each node represents either an entry into (red nodes) or exit from (green nodes) a specific 
intersection. The directed arcs that connect two nodes together can be of two types: 

 An arc that starts from an exit node and ends at an entry node represents a road 
segment between two intersections (black arcs). 

 An arc that starts from an entry node and ends at an exit node represents a valid 
turning action that can be performed at the intersection, such as turn left, turn right, u-
turn or straight-through (blue arcs). 

Figure 1: Road network graph data structure representation 
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2.2 Public Transport Network 

The graph data structure that is used in the MMTP for the public transport network is 
depicted in Figure 2, while Figure 3 shows a more detailed representation of the data 
structure within a specific stop. We have used the Time-Expanded Approach (TEA) (Schulz, 
2005) to represent the public transport network. In the TEA, each node represents a specific 
event in time at a specific stop. There are three types of events that can occur: 

 Arrival event, which represents a transit vehicle arriving at the stop. 

 Departure event, which represents a transit vehicle departing from the stop. 

 Transfer event, which allows for transfer connections between services. 

There are four types of arcs that connect pairs of these event nodes together: 

 Service link, which connects arrival and departure events. These arcs can represent 
either the transit vehicle moving from one stop to the next stop, or the vehicle sitting 
stationary at the stop between its arrival and departure events. 

 Transfer link, which connects arrival events to transfer events. These arcs represent 
the ability for a passenger to disembark from the transit vehicle to either transfer to 
another service or to complete their public transport journey. Also, the transfer link 
can connect an arrival event in one stop to a transfer event in another stop, which 



represents the passenger disembarking from the transit vehicle and walking to a 
nearby stop to board another service. 

 Boarding link, which connects transfer events to departure events. These arcs 
represent the ability for a passenger to board a transit vehicle. 

 Waiting link, which connects consecutive transfer events within a stop. These arcs 
represent the waiting time that a passenger spends until their chosen service arrives 
for boarding. 

Transfer and Boarding arcs can be omitted between certain nodes to represent situations 
where only boarding or disembarking is allowed at a stop for a particular service. However, 
Service and Waiting arcs are mandatory between consecutive events for a service and within 
a stop, respectively. 

Figure 2: Public transport network graph data structure representation (Schulz, 2005, p. 20) 
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Figure 3: Detailed representation of public transport graph data structure within a stop (Schulz, 
2005, p. 39) 
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2.2 Shortest-Path Algorithms 

Two shortest-path algorithms have been implemented for the MMTP, Dijkstra’s algorithm and 
A* heuristic algorithm. 

Dijkstra’s algorithm is the classical label-setting shortest path algorithm proposed by Edsger 
Wybe Dijkstra (Dijkstra, 1959). It is actually a one-to-all shortest path algorithm as it finds the 
minimum cost from the origin node to all other nodes in the graph. The pseudo-code for 
Dijkstra’s algorithm is as follows: 

1. Assign an initial value to every node label. 

a. Zero for the origin node; 

b. Infinity for all other nodes. 

2. All nodes are marked as unvisited, and construct the unvisited set from these 
nodes. 

3. Set the origin node as the current node. 

4. For the current node, check all of its unvisited neighbours and calculate the cost of 
going from the current node to each neighbour. 

a. If the cost of going from the current node to an unvisited neighbour plus the 
value of the label for the current node is less than the label for that unvisited 
neighbour, replace the neighbour’s label with this sum. 

5. When all unvisited neighbours have been checked, mark the current node as 
visited and remove it from the unvisited set. A visited node is never checked again, 
and its cost is minimised. 

6. If the unvisited set is empty, stop the algorithm. All node labels contain minimum 
costs of travelling from the origin to the node. Otherwise, find the node in the 
unvisited set with the smallest label value and set it as the next current node, then 
return to step 4.  

The original Dijkstra’s algorithm did an unordered search when finding the next candidate 
node, and has been shown to have a complexity of O(n2), where n is the number of nodes. 
Various improvements have been made on the performance of the algorithm by storing 
candidate nodes in a heap or priority queue structure, and retrieving the node at the front of 
the queue as the next current node, which speeds up the node selection and has a 
complexity of O(m log(n)) (Johnson, 1972), where m is the number of arcs. This is the 
approach that has been used in the MMTP. Other improvements include the S-bucket 
algorithm (Dial, 1969) and an algorithm that uses a Fibonacci heap. This last algorithm has a 
complexity of O(m+l log(n)) (Ahuja et al., 1990). 

The A* heuristic algorithm (Hart et al., 1968) improves upon Dijkstra’s algorithm for one-to-
one shortest path problems, as it takes into consideration where the destination node is 
located. Rather than sort candidate nodes in the order of their cost from the origin node, A* 
uses an estimate of the cost to travel from the candidate node to the destination node, plus 
the calculated cost from the origin node to the candidate node, and orders the nodes based 
on this sum. It has been proven that if the estimate always underestimates the actual cost of 
travelling from the candidate node to the destination, the heuristic is admissible and will 
always calculate the optimal shortest path. 

The main challenge to using the A* heuristic algorithm is the calculation of the estimate from 
the node to the destination. When the cost being considered is the shortest distance, the 
straight-line distance between the node and the destination is used and is relatively simple to 
calculate. However, for other objective costs, this estimation function is not as simple. For 



instance, the minimisation of travel time requires the knowledge of the maximum speed used 
between the node and the destination, and the estimate of the travel time between the node 
and destination is the straight-line distance divided by the maximum speed. The quality of the 
estimate has an effect on the computational performance of the A* algorithm. Ideally, the 
estimate should be as close as possible to the actual shortest path cost. The further the 
estimate is from the actual cost, the greater in number of nodes will be visited by the search 
algorithm, and therefore increases the time need to complete the search. 

Another group of shortest path algorithms are the Bidirectional methods, such as 
Bidirectional Dijkstra (Dantzig, 1960, Nicholson, 1966) and Bidirectional A* (Pohl, 1969). 
These methods adapt the unidirectional algorithms to search from both the origin and 
destination at the same time, which reduces the overall search space compared to the 
original algorithms. 

Finally, more recent research over the last two decades, since the late 1990’s has seen the 
development of more sophisticated and efficient algorithms that require different amounts of 
pre-processing. Pre-processing has become more attractive due to the exponential increase 
in processing speed and memory capacity, which has made these approaches more viable. 
Some of these approaches include ALT (A* Landmarks with Triangle inequality) (Goldberg 
and Harrelson, 2005), Contraction Hierarchy approaches (Geisberger et al., 2008) and 
Hierarchical Encoded Path Views (HEPV) (Jing et al., 1998). Fu et al. (2006) provides a 
comprehensive overview of many of these methods that are available. 

The main reason that the Dijkstra and A* algorithms have been implemented for the MMTP, 
and the more complex and efficient algorithms have not, is due to the simplicity of their 
implementation, as the focus of this research has been on the development of an approach 
to integrate the road and transit networks together to calculate multimodal shortest paths. 
Section 2.2 will present the approach that has been developed in detail, but in essence, this 
approach allows for the current shortest path algorithms to be replaced by more efficient 
algorithms once they have been implemented in the future. 

2.2 Network integration for multimodal search 

In the process of designing the MMTP, two methods were proposed for integrating the road 
and public transport networks together when performing a multimodal search. These 
approaches are the Multi-Level Network approach and the Multi-Step Algorithm approach. 

The Multi-Level Network approach constructs a single graph data structure, where each 
different mode of transport is on a separate level, and connections are made between nodes 
in different levels where transitions between the modes occur, such as at Park’n’ride 
locations between automobiles and public transport. A dynamic version of this approach is 
used by Bousquet et al. (2009) to compute a one-way multimodal shortest path, and they 
also propose a strategy for solving the two-way approach. 

On the other hand, Khani et al. (2012) propose an intermodal path algorithm, which performs 
a sequential application of transit and automobile shortest paths, which results in the optimal 
intermodal path and indicates which park-and-ride location is optimal for transferring between 
private and public modes. This is similar to the Multi-Step Algorithm approach that was 
implemented for this research, although the algorithm steps differ in the order they are 
performed. The Multi-step algorithm approach keeps the two graph data structures separate, 
and generates an overall journey by performing the following algorithm: 

1. Find the park’n’ride locations within a specified distance of the origin (based on the 
cost of driving from the origin to destination by automobile only) 

a. Calculate the shortest path to drive by automobile from the origin to each of 
the park’n’ride locations. 

2. For each of the park’n’ride locations, find the stops within a specified walking or 
cycling distance of these locations. 



a. Calculate the shortest path to walk from the park’n’ride location to each of its 
neighbouring stops. 

3. Find the stops within the specified walking or cycling distance of the destination. 
a. Calculate the shortest path to walk from each of the neighbouring stops to the 

destination 
4. Using the stops surrounding the park’n’ride locations as origin stops, and the stops 

surrounding the destination as destination stops, calculate the shortest paths via 
public transport from the set of origin stops to the set of destination stops. 

The fourth step, where the public transport legs are calculated, makes use of a modified 
version of the Dijkstra’s algorithm that takes as input a set of origin stops along with their cost 
from the actual origin, and a set of destination stops along with the cost to the actual 
destination. Conceptually, it is similar to Dijkstra’s algorithm, however each of the origin 
nodes are set as visited nodes with their label values set to the costs input into the algorithm. 
If a destination stop is reached during the search, the node is saved in a list, and the 
algorithm terminates when either a specific number of nodes have been saved to the list, or 
there are no more nodes in the unvisited set. This approach improves on a brute-force 
approach, where shortest path searches are performed separately for each pair of origin and 
destination stops, as it ensures that each node in the network is visited only once overall in 
the Multi-Step Algorithm approach 

There are also additional restrictions that are checked when checking neighbours of the 
current node in the public transport search. These include a maximum period of time that has 
passed between the start of the journey and the time of the current event node, or the total 
number of transfers has exceeded a specified maximum. This reduces the overall search 
space covered by the algorithm, therefore improving computation time. 

3. Testing methodology 

A testing methodology plan has been developed in order to produce results that can be 
analysed and from which conclusions can be made on the computational performance of the 
MMTP algorithms. The methodology plan is detailed in this section. 

First, a list of suburbs in the South East Queensland (SEQ) region is chosen. Figure 4 shows 
the geographical distribution of these suburbs. They are in the following four categories: 

 Major Destinations (Green) 

– Central Business District (CBD) 

–  Airport 

–  Fortitude Valley 

 Suburbs with major shopping centres (Blue) 

– Chermside 

– Indooroopilly 

– Carindale 

– Upper Mount Gravatt 

– Strathpine 

 Suburbs at the extremities of the SEQ region (Yellow) 

– Ipswich 

– Southport 

– Coolangatta 



– Maroochydore 

– Caboolture 

 Metropolitan suburbs (Red) 

– New Farm 

– St Lucia 

– Redcliffe 

– Wynnum 

– Samford Village 

– Albany Creek 

– Forest Lake 

– Graceville 

The major destinations and shopping centre suburbs have been chosen because the 
performance of searches to and from these locations are important, since it is likely that 
many requests will involve one of these suburbs. The suburbs at the extremities of the SEQ 
region have been chosen to test the performance of long-distance journeys, which are the 
worst-case scenarios for the MMTP. The other suburbs have been chosen for a number of 
reasons. New Farm, St Lucia and Graceville are relatively close to the CBD; however a direct 
straight-line trip is not possible due to the curves of the Brisbane River, so they should 
produce more interesting journey plans. The other metropolitan suburbs have been chosen 
to produce results in a number of different cardinal directions. 

Tests are run using each of these suburbs as an origin, excluding the CBD, and the CBD as 
the destination. The tests with each suburb pair is run using automobile only, public transport 
only, and multimodal mode choices. For the public transport only and multimodal choices, 
tests are performed for 4 time periods: morning peak (6am – 9am), afternoon peak (4pm – 
7pm), inter-peak period (9am – 4pm) and evening/early morning (7pm – 6am). 50 tests are 
run for each combination of (suburb, CBD) origin/destination, transport mode and time 
period, with a random origin and destination coordinate chosen from within the respective 
suburbs. 

The following parameter values are set for the tests: 

 Objective type: Travel Time 

 Query type: Depart After 

 Maximum Number of Transfers: 3 

 Maximum Walking Distance: 1500 metres 

 Maximum Transfer Distance: 400 metres 

 Maximum number of itineraries to be returned: 1 

 



Figure 4: Geographical Distribution of Test Suburbs 

 

 

 

 

 



4. Test Results 

This section presents a collection of the test results that have been obtained by following the 
testing methodology detailed in Section 3. These tests have been performed on a desktop 
computer with an Intel Core I5 650 processor operating at 3.2 GHz, 16 GB of RAM and 
Windows 7 64-bit as the operating system. For readability and space purposes, a selection of 
the suburbs will be presented in the graphs in Figure 5, Figure 6, and Figure 7. 

Figure 5: Road Only Search Computation Time 

 

Figure 6: Public Transport Only Search Computation Time 
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Figure 7: Multimodal Search Computation Time 

 

5. Analysis of Results 

Figure 5 presents the computational times for the road-only searches. A relationship can be 
seen between the travel time and the computational time required to complete the search. 
This is because the computational time is directly related to the number of nodes that are 
searched, and the longer a journey is, the more nodes will be visited. A* clearly performs 
better than Dijkstra’s algorithm in all cases, and the difference in this performance increases 
as the travel time is increased. It is interesting to see the similarities in computation time of 
the Southport and Maroochydore searches, while the travel times are greater for 
Maroochydore compared to Southport. This is most likely due to the density of nodes 
encountered in the searches, as the road network is more dense travelling north from 
Southport to the CBD, compared to travelling south from Maroochydore to the CBD. 

Figure 6 presents the computational times for the public transport only searches. A 
relationship between travel time and computation time cannot be clearly seen in this data, 
and this is because the nodes in the public transport graph represent events that occur at 
transit stops and are not directly related to distance or travel-time. As opposed to the road-
only searches, using Dijkstra for the shortest path searches between the origin/destination 
and their surrounding stops performs markedly better than using A*. This is because a single 
Dijkstra 1-to-many search was utilised, as opposed to having to use separate 1-to-1 A* 
searches for each stop, and thus the nodes in the network are only visited once in the overall 
search. 

Figure 7 presents the computational times for the multimodal searches. These results 
provide for similar conclusions that were made for the public transport only searches. The 
use of single Dijkstra 1-to-many searches for the road and walking legs performs 
considerably better than the use of many 1-to-1 A* for each individual stop/park’n’ride 
combination. The main difference in Figure 7 when compared to Figure 6 is that there is 
some relationship between computation time and travel time. This is due to the driving legs of 
the multimodal journey, and is most visible in the A* searches. While it is not that visible in 
Figure 7, the computation time of the Dijkstra searches does increase slightly with respect to 
the travel time. 
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The practical use of these algorithms within a trip planner application must be considered as 
well. Most users will be expecting a result within a few seconds of their request, therefore the 
average and worst case of computation time must be analysed. For road-only searches, the 
MMTP performs adequately, producing results within a second for almost all searches, 
including the worst case scenarios of travelling from Maroochydore to the CBD. 

For public transport only searches, using Dijkstra as the shortest-path algorithm produces 
adequate results, with the average search completing within 5 seconds, with a few outliers 
that take around 10 seconds. These outliers are actually due to memory-allocation issues 
caused by using C#, which takes care of recovering memory itself via a garbage collector. 
Therefore, implementing the MMTP in C++, where the memory allocation is coded explicitly, 
may remove this issue and these outliers. A* is clearly not viable in practice, with the 
minimum computation time required at 15 seconds, and varies considerably depending on 
the specifics of the request. 

For multimodal searches, the average time required for a search when using Dijkstra is 
below 10 seconds, with the worst cases taking under 20 seconds to complete. This is 
probably on the borderline of what would be acceptable by a user of the application, however 
this computation time can be improved upon by modifying various input parameters to the 
search, such as maximum number of transfers, maximum transfer distance between nearby 
stops, and the maximum time allowed for the journey to take. Again, the performance of A* 
would not be viable in practice. 

6. Conclusion 

This paper has presented the design of the Multimodal Multi-objective Trip Planner, detailing 
the data structures and algorithms used in its implementation. It then outlined a methodology 
for testing the computational performance of the MMTP, and presented results obtained from 
tests based on the SEQ region. An analysis of these results has been discussed, comparing 
the performance of Dijkstra and A* for road only, public transport only and multimodal 
searches, as well as discussing the practical expectations of performance from the user’s 
perspective and whether these algorithms satisfy these expectations. 

The future work that will be performed on the MMTP is to extend it to allow for the integration 
of real-time information, such as predicted travel times. This will require the design and 
implementation of more sophisticated time-dependent shortest path algorithms, as well as 
modifying the data structures to incorporate this time-dependent data. 
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