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Abstract   
One frequently overlooked source of trips in Sydney (and elsewhere) is light commercial 
vehicles (LCVs) used by tradesmen and other service workers to travel to customers to provide 
commercial services. Although these trips have substantial differences from other types of trips 
(and vehicles), they are frequently included either as standard passenger vehicles or, 
alternatively, as freight, if they are considered at all. However, light commercial vehicle trips 
used for commercial services comprise a substantial number of vehicle trips, particularly in 
areas with large concentrations of businesses such as the Sydney CBD and other growing 
business precincts, and for this reason should be included in travel demand models. As part 
of a large project involving the development of a comprehensive model system for predicting 
passenger, service and freight travel in Sydney (MetroScan-TI), this paper outlines the 
estimation and application of a set of models for service vehicles. The model system includes 
four models, a tour generation model, a tour type model, an SLA choice model and a 
destination (or travel zone) choice model. These models are estimated using data from a small 
subset of the Sydney Household Travel Survey (HTS) involving work trips using LCVs, as well 
as detailed land-use and employment data from the 2011 Australian Census. We obtain a set 
of behaviourally rich and geographically detailed models that incorporate feedback through the 
use of several inclusive value (logsum) parameters. In addition to the overview of the model 
system, this paper discusses the estimation results and their application to policies. 

1. Introduction 

Light commercial vehicles are some of the most common vehicles on the roads of many cities, 
but they are also among the vehicles of which relatively little is known about their use. Light 
commercial vehicles (LCVs), or to be more accurate in the context of this paper, light 
commercial service vehicles as opposed to light goods vehicles (LGVs), include small vans 
and utility vehicles frequently used by tradespeople and other service workers to travel 
between different customers where they provide an on-site service. Typically these services 
require specialist, heavy or large tools and parts that are difficult to carry in passenger cars. 
The nature of the services provided by these workers means that their travel patterns are 
neither consistent with commuting trips and other work-related trips (e.g., travel to meetings) 
nor with the trips made by freight vehicles delivering goods (Mei, 2013). However, despite 
these differences, LCV trips by service workers are typically either modelled as part of 
passenger travel or, occasionally, freight models, as well as frequently ignored altogether. This 
has been the case despite the large number of trips that are made by LCVs. This paper 
describes the structure, estimation and application of a set of behavioural models for service 
vehicles. This is followed by a discussion on the application of the results to policy. 

2. Background and motivation 

Passenger vehicles dominate the Sydney Greater Metropolitan Area's (GMA) vehicle fleet with 
approximately 86% of the fleet of cars, LCVs and heavy vehicles (see Figure 1). However, 
"panel vans" and utility vehicles together account for 12%, most of the remaining vehicles on 
the road after passenger cars (Australian Bureau of Statistics, 2014). Although not all of these 
vehicles are used for service trips and those that are will likely also be used for other purposes, 
they are a significant proportion of the fleet. Furthermore, it is known that LCVs tend to be used 
for more trips than passenger vehicles (Mei, 2013). Trips from LCVs are also increasing at a 
higher rate than thoseof passenger vehicles and heavy vehicles (Hebes et al., 2013). For these 
reasons, it was considered important to develop a model that was optimised for service trips 
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rather than including these trips in either the passenger or freight models that are being 
developed as part of a large project involving the development of a comprehensive model 
system for predicting travel in Sydney (MetroScan-TI). 

Figure 1:  Proportion of car, LCV and heavy vehicle fleet in Sydney by class 

 

It is important to emphasise that the focus of the models described in this paper are service 
trips made by light vehicles rather than freight-carrying trips, regardless of the vehicle class. 
Although it is acknowledged that some of the increase in trips from LCVs is a result of freight-
carrying activities being switched from heavier vehicles to light vehicles (Ellison et al., 2013), 
the behavioural drivers of these trips are likely to be different to those of service trips, and as 
a result are not considered in these models. The focus of the LCV models described in this 
paper are primarily on the types of tours (i.e., number of stops in a tour) and the destinations 
within the tours. 

3. Literature review 

Many studies on commercial vehicle movements either ignore the differentiation between 
goods-carrying LGVs and other LCVs, if they are not ignored altogether. Nonetheless, some 
studies have attempted to model LCVs separately from freight-carrying vehicles. These studies 
broadly fall into two categories. The first of these categories includes studies that apply gravity 
models and other methods that have typically been applied to freight vehicles. The second, 
but smaller, category of studies are those that attempt to develop behavioural models to 
explain LCV trips. 

One study of LCVs in Sydney used data collected primarily from two surveys from the 
Transport Data Centre (now Bureau of Transport Statistics, Transport for NSW) that included 
LCVs (Mendigorin and Peachman, 2005). Mendigorin and Peachman (2005) used a dataset 
from an earlier study that measured the attraction rates of LCVs to both businesses and 
households, and a dataset from the Commercial Transport Survey (CTS). Using a gravity 
model, a trip matrix for LCVs in Sydney was estimated (Mendigorin and Peachman, 2005). A 
similar study in Germany used data from earlier studies as well as business registration and 
employment data to generate vehicle locations (by vehicle class including LCVs) and through 
these, trip matrices (Steinmeyer and Wagner, 2006). 

These studies are useful for providing an estimate of the likely LCV trips generated in an area 
and can provide some insights into how LCV trips are distributed around a city. Given the 
relatively little data available on LCV trips, these estimates can be very useful and provide 
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information that can be used to differentiate LCV trips from both passenger and freight trips 
(Elaurant et al., 2007). However, these models do not have much predictive power as they 
generally lack a behavioural basis and rely primarily on averages and data on the origin and 
destination zones, and lack any data on the individual LCVs. 

There are a limited number of studies that have studied the behavioural drivers of service trips 
and related decisions. For example, a German study used data from a survey on general 
vehicle traffic as well as data on service-related trips specifically (Hebes et al., 2013). Hebes 
et al. (2013) used a combination of multinomial logistic regression on the general vehicle data 
and multiple linear regression on the service-related data to identify how different firm 
characteristics affected the service trips they made. Although this study included work-related 
trips by car as well as service-related trips using LCVs, the study found that the industry of the 
firm, the size of the firm and the location of the firm were also significant predictors of VKT for 
service trips. As could reasonably be expected, their results showed that the location of 
customers was important to total vehicle kilometres of travel (VKT), but they also found that 
the location of a firm in an agglomeration substantially reduces their average VKT. Another 
study that looked at both goods and service vehicles used discrete choice models to model 
likely destinations of LCVs for goods and service-related trips in North Carolina (Mei, 2013). 

4. Data and overview of model system 

As discussed in the brief literature review, modelling of LCV trips has primarily focused on the 
use of gravity models for generating origin-destination flows of trips based on employment and 
population patterns in each area. In contrast, the structure chosen for the models described 
here uses several nested discrete choice models with disaggregate data. The reasons for this 
are two-fold. First, the primary purpose for developing the models was to provide forecasts of 
the likely changes to service trips given new infrastructure projects and changes to transport 
and land-use policies at a strategic level. Discrete choice models can be used to estimate 
behavioural changes based on underlying demographic (or firm-level) characteristics as 
opposed to gravity models that are intended to provide estimates of aggregate flows given 
exogenous zone-level data. Second, the use of the LCV models, as just one set of models 
within a larger framework that includes both passenger and freight-related models, required  
that the models be generally consistent with the form of the other models (albeit with some 
necessary adjustments). Since the other models have been estimated using discrete choice 
models for use with synthetic households (or firms), these LCV models use a similar form 
(Hensher, 2008). It should be emphasised that the model structures themselves are by 
necessity different due to the different nature of decisions made by households, service firms 
and freight transport firms but all retain the use of synthetic agents as the decision makers. 

4.1. Data 

The dataset used for estimating the models includes a small subset of the Sydney Household 
Travel Survey (HTS) as well as a dataset of zone-level data sourced from the Australian 
census, various Australian Bureau of Statistics (ABS) surveys and publications, and the 
GeoScience Australia NEXUS database. The data (and the resulting models) cover the 
Sydney Greater Metropolitan Area (GMA). 

The HTS dataset that was used is a subset of the HTS including only individuals involved with 
work-related trips using LCVs. A combination of several HTS variables were used to identify if 
the purpose of the trip was likely to be a "service" trip including the industry and occupation as 
well as frequency of work-related trips made by LCV. The HTS data was used to ensure that 
relevant demographic characteristics were available for estimating the models that were also 
available (through other sources) for the later development of synthetic households (and in 
particular the service workers within them) (Hensher, 2008). 

The zone-level data used includes data on employment by industry and occupation from the 
Australian census, ABS business counts by both employment and revenue, and land-use data 
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derived from ABS meshblock data. Also used was data from the GeoScience Australia NEXUS 
database that provided details on the existing number of physical structures of various types 
(such as warehouses, factories, and office and residential buildings). Some of these data are 
available for both the SLA-level model and the travel-zone model but some is available only 
for the SLA-level model. 

4.2. Model system 

The proposed LCV demand model system (LCVDM) consists of a series of sub-models 
connected together in a tree structure such that sub-models at one stage influence models at 
other stages higher up in the hierarchy through accessibility measures. Conversely, sub-
models at the lower stage are conditioned by models at higher stages. The first model is the 
tour-type model (TTM) that determines the number of stops in a given tour. The number of 
alternatives in this model are tours with 1, 2, 3, 4, and 5+ (5 or more) stops with the distribution 
presented in Figure 2. A tour with 1 stop means a driver starts his tour from an origin (e.g., his 
home) visits only one stop and returns to his origin. This model uses data from the HTS 
(occupation in particular) for each individual service worker (vehicle driver). 

Figure 2:  Number of tours in sample by number of stops 

 

The second model is the stop choice model (SCM) which determines the actual stop(s) 
(destinations) for each tour type. The SCM is a Nested Logit (NL) model where each nest is a 
Statistical Local Area (SLA) zone and the number of nests equals the number of SLA zones in 
the Sydney Greater Metropolitan Area (GMA). The elementary alternatives in each nest are 
the travel zones within that nest (SLA). Thus the unconditional probability of stopping at a travel 
zone along a tour is the product of the probability of choosing the nest (SLA) in which the travel 
zone is in and the probability of choosing the travel zone within that nest. The stop choice 
modelling technique allows us to make use of some additional explanatory variables that are 
available at the SLA-level without these variables having to be available at the travel-zone 
level. Furthermore, the nested structure means that the zones used in the lower level (travel 
zones) are logically consistent with the tour type model that predicts the number of stops while 
maintaining predictive power for inter-SLA trips. 

In addition to these models, the model system incorporates the micro-simulation techniques 
used with the synthetic households (and synthetic firms) as are used in TRESIS (Hensher, 
2008) to apply these models. This is used for selecting the number of stops to visit based on 
the probabilities, and constructing a tour linking the stops together as well as factoring the 
results up to the population. A simplified version of the model architecture dealing with how the 
logit models were estimated is presented in Figure 3. 
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Figure 3:  Overview of model system 

 

5. Methodology and estimation 

All models are logit models estimated using the NLogit software package (Hensher et al., 
2015). The first estimated model is the NL model for stop choice followed by the tour-type 
model. 

5.1. Stop Choice Model 

The stop choice model, developed as part of the MetroScan-TI project, is a Nested Logit model 
with the alternatives on the lower level being travel zones and those in the upper level being 
SLAs. Starting with the lower level, the unconditional probability of stopping at travel zone j 
from origin i under tour type t is mathematically expressed as: 

Pijt = Pit(m)Pit(j/m) 

where Pit(m) is the probability of choosing nest m = {1,2, … , M} (i.e., the SLAs) and Pit(j/m) is 
the probability of stopping at travel zone j given that it is within nest m for origin i and tour type 
t and where M is the number of nests. These probabilities are mathematically expressed as 
shown in the equations below: 

Pit(m) =
eUimt

∑ eUimtm∈Nt

Pit(j/m) =
eUit(j/m)

∑ eUit(j m⁄ )
j∈Nm

 

Uimt and Uit(j m⁄ ) are the utilities for nest 𝑚 and travel zone 𝑗 or origin i and tour type t 
respectively: 

Uit(j/m) = β ⋅ GTijt + α ⋅ ln(Pop j) + ∑ γl

E

l=1

⋅ ln(Ejl) 
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GTijt is the generalised time1 of traveling from origin zone i to stop j along tour type t, ln(Pop j) 

is the natural logarithm of the population in travel zone j, and ln(Ejl) is the natural logarithm of 

the number of people employed in industry l in travel zone 𝑗 and E is the number of industry 
types. The generalised time was constructed as follows: 

GTijt = Tijt +
voc

vtts
Dijt + ⋯ 

where Tijt is the travel time (in minutes) of traveling from origin zone i to stop j along tour type 

t, voc is the vehicle operating cost ($/km), vtts is the value of travel time savings ($/min) and 
Dijt is the corresponding travel distance (km). The VTTS used is one derived from several 

confidential studies on non-commuting work-related travel so the exact value is not reported 
here but it is in range of those used elsewhere of between $25/hr and $40/hr (Mackie et al., 
2003; Batley 2014). 

The utility of each nest can then be expressed as: 

Uimt = θt ⋅ Limt + φ 

where Limt is the logsum or expected utility over all the travel zones within nest m under tour 
type t, θt are structural parameters with different estimated values for each tour type t, and φ 
is a constant for zones in the Sydney Inner City SLA relative to tour type 1. The logsum was 
expressed as: 

Limt = ln ∑ eUit(j m⁄ )

j∈Nm

 

5.2. Tour Type Choice Model 

The tour type model is a logit model in which the logsums from the stop choice models are 
used. Once the parameters in the SCM are estimated, the logsums are computed for each tour 
type, and these are then fed up into the tour type model as variables in the following utility 
equation: 

Uit = δ ⋅ Lit + ∑ ηl

C

l=1

⋅ (Occ l) + ρt 

where Lit is computed over all stops for each tour type t with associated structural parameter δ 

to be estimated, ρt are the constants for each tour type estimated relative to tour type 5+, Occ l 
is an indicator variable which equals 1 if the tour type was made by a driver with occupation 𝑙, 
and zero otherwise, with parameters ηl which were estimated relative to tour types 2, 3, 4 and 
5+ and C is the number of occupation types. The logsums were computed using the equation: 

Lit = ln ∑ eUimt

m∈Nt

 

The parameter estimates for both the stop choice models and the tour type model are 
discussed in the following section. 

6. Results 

6.1. Stop choice model results 

The estimation results for the stop choice models are reported in Table 1 (for the travel zone 
level) and Table 3 (for the SLA-level) showing that all estimated parameters except 
employment type 1 (employment in the mining and agriculture industries) are significant at the 

                                                
1 Generalised time (GT) is a linear combination of time and monetary costs expressed in time units.  
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95% confidence interval (the full list of employment categories are provided in Table 2). As 
expected, the results showed negative marginal utilities for increases in generalised travel 
time. Also, the higher the tour type (i.e., the number of stops on a tour), the larger the (negative) 
parameter of generalised cost2, implying that service workers generally prefer using tours with 
a higher number of stops as transport costs increase. This is particularly pertinent to policies 
such as congestion charging or road pricing suggesting that these policies may result in a shift 
to longer (and arguably more efficient) tours. The estimated population and employment 
variables are all positive, as expected, and indicate that service workers are more likely to stop 
at zones with higher levels of employment and population. Employment type 5 
(accommodation and food services) has the highest weight indicating the likelihood of more 
stops at zones with a higher number of jobs in those sectors, all other things being equal. 
Furthermore, the estimated structural parameters, or logsum parameters, are all positive and 
are within the expected range of 0 and 1 (see Hensher et al. 2015). The results also show that 
the higher tour types have fewer degrees of correlation among their alternatives. In other 
words, travel zones (or stops) available to lower tour types are better substitutes of each other 
than those under higher tour types. 

Table 1:  Results of travel zone stop choice model 

Generalised time 
variables Parameter Z-Stat 

Employment 
Industry3 Parameter4 Z-Stat 

Gen Time TR1 (Min) -0.0819 23.77 1 0.0178 1.24 

Gen Time TR2 (Min) -0.0687 18.22 2 0.0311 2.34 

Gen Time TR3 (Min) -0.0539 11.20 4 0.0747 3.95 

Gen Time TR4 (Min) -0.0394 6.64 5 0.0839 5.52 

Gen Time TR5 (Min) -0.0359 7.14 6 0.0690 4.72 

Log (Population) 0.0202 2.42 7 0.0422 3.22 

   9 0.0341 3,22 

   12 0.0519 1.89 

No of Estimated 
Parameters 

14.00     

No of observations 4749     

Null log likelihood -19679     

Model log likelihood -15598     

Rho bar squared 20%     

Inf.Cr.AIC 30170.00     

 
Table 2:  Industry classifications 

Employment industry Code  Employment industry Code 

Agriculture and mining 1  Financial and insurance services 7 

Manufacturing 2 
 Media, Professional, Scientific and ICT 

services 
8 

Construction 3  Public administration 9 

Wholesale and retail trade 4  Education and training 10 

Accommodation and food services 5  Health care and social assistance 11 

Transport and warehousing 6 
 Real estate, administration and other 

services 
12 

                                                
2 Generalised cost (GC) is a linear combination of time and monetary costs expressed in monetary units. 
Generalised time (GT) can be converted into GC by multiplying GT by the value of travel time savings 
($/min). Thus higher GT implies higher GC and vice versa.  
3 See Table 2 for meaning of the codes 
4 These are estimated parameters for the natural logarithm of each employment type.  



Modelling Sydney’s light commercial service vehicles 

8 

 

Table 3:  Results of SLA stop choice model 

Logsums and variables Parameter Z-Stat 

Tour type 1 Logsum 0.6634 46.03 

Tour type 2 Logsum 0.7120 41.42 

Tour type 3 Logsum 0.7222 31.27 

Tour type 4 Logsum 0.8285 26.59 

Tour type 5 Logsum 0.8063 32.15 

CBD TR2+TR3+TR4+TR5 0.6034 8.07 

No of Estimated Parameters 6  

No of observations 4750  

Null log likelihood -19972  

Model log likelihood -12107  

Rho bar squared 39%  

Inf.Cr.AIC 24227  

 

6.2. Tour type choice model results 

Table 4 contains the estimation results for the tour type model, and also shows that all 
estimated parameters are significant at the 95% confidence interval. Again as expected, the 
results showed that the logsum parameter is positive and is within the expected range of 0 and 
1. The smaller logsum parameter relative to those in the stop choice models indicates that tour 
type choice is less sensitive to changes in transport level of service (LOS) variables than stop 
choice. In other words, service workers are more likely to change a visited stop than to change 
the tour length (measured by the number of stops) as a result of changes in transport LOS. 
The change in visited stops here is likely due to re-ordering of the tour such that the first visited 
place may be the second or last stop.  

The estimated occupation variables are all negative, implying all things being equal, workers 
in these occupations are more likely to use tours with only a single stop. For example, the 
negative value (-0.3028) associated with 'Managers' indicates that managers generally prefer 
tours with one stop rather than those with two or more stops. This is also true for the rest of 
the occupation variables included in the model. The results also reveal that those who are 
employed as 'machinery operators and drivers' are most likely to undertake tours with one 
stop, followed by 'professionals' while those in managerial positions are the least likely to do 
so of the occupations included in the model but more likely than those of other occupations. 
The positive constant for tour type 1 further supports these conclusions. 
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Table 4:  Results of tour type model 

Variable Parameter Z-Stat Constant Parameter Z-Stat 

Logsum 0.5528 1.59 Tour 1 1.7834 20.58 

Managers -0.3028 2.23 Tour 2  

Professionals -0.4643 2.73 Tour 3 -0.4458 5.77 

Technicians and Trades 
Workers 

-0.4387 4.42 Tour 4 -1.0938 10.98 

Machinery Operators and 
Drivers 

-0.4686 2.82 Tour 5+  

Labourers -0.3839 2.53   

No of Estimated Parameters 9     

No of observations 2609     

Null log likelihood -4199.02     

Model log likelihood -3178.43     

Rho bar squared 24%     

Inf.Cr.AIC 6374.90     

6.3. Discussion 

Many of the results of these models are consistent with those expected a priori. However, there 
are a few interesting results. One of these is the difference in the parameters for generalised 
time conditioned by the tour type. Although in large part, the differences in the parameters for 
generalised time for the different tour types are expected because of the higher total costs and 
travel times associated with longer tours, this does not fully explain the differences as 
evidenced by the estimates of the logsums in the upper models. Instead, the significance of 
the different generalised time parameters in the travel-zone model suggests that tours 
involving more stops are less likely to change destinations than less complex tours. 
Furthermore, the logsums in the upper models indicate that these differences also have an 
effect on the likelihood of choosing a particular type of tour that, as stated above, suggests 
that higher costs would likely lead to an increase in more complex tours. However, although 
changes to the generalised costs appear to have an effect on the type of tour, the results 
suggest that service workers are likely to first reorganise the order and combination of stops 
they make in each tour as generalised cost increases. These results make intuitive sense 
because the largest proportion of travel time is likely to be interzonal (between SLAs) rather 
than intrazonal (within SLAs), and as a result, any additional stops within the same zone offset 
any increase in the generalised cost of travelling to the SLA. 

7. Policy implications 

The results of the models have several implications for policy makers. Perhaps most 
importantly, the effect of changes to costs or travel time, which are accounted for through the 
generalised time function in the model, are related to the tour type. The results suggest that 
increasing the generalised cost (likely through financial costs rather than time) will lead to a 
greater number of trips tours containing multiple stops, particularly if a congestion charge (or 
other charge) is levied only in specific SLAs. Although not directly comparable to the results of 
Hebes et al. (2013) who focused on total distance rather than the complexity of tours, the 
results are consistent with their findings of shorter distances given higher costs and 
agglomeration (i.e., clusters of customers in a single location). 

Also of importance to policy makers are the results that different occupations for service 
workers have an effect on the types of tours. Although service workers are frequently 
characterised exclusively as tradespersons (or related occupations), both the sample dataset 
and the results show how different occupations are involved in "service trips". These include 
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managers and professionals (e.g., engineers) making site visits in addition to the more 
common trips made by tradesmen. The differences between how the different occupations 
within the service sector choose a tour type suggests that any policy or infrastructure project 
is likely to affect tours made by each occupation differently, with managers and labourers more 
likely to have tours with more than one stop than professionals and machinary operators and 
as a result are likely to be less substantially affected from increases in generalised costs. The 
results suggest those in other occupations would likely make changes to their trips in an 
attempt to maximise the number of stops and potentially split up any increase in costs between 
multiple customers. 

Of particular interest is that together, the results of these models further support the benefits 
of agglomeration in cities by extending the benefits to service workers (and the firms they work 
for) who gain a benefit from the reduced negative effects of changes to generalised costs when 
fewer complex tours can be made rather than many point-to-point tours. 

7.1. Application 

It is important to emphasise that these models have been estimated for use with a micro-
simulation technique that uses synthetic individuals (including service workers), households 
and firms to simulate the decisions made by real individuals and firms in the population 
(Hensher, 2008). This means that applying these models in practice requires some 
disaggregate data on service workers in the population from which synthetic individuals (and 
the firms and households they are part of) can be constructed and their weights (representing 
their incidence in the population) calculated. Crucially, before being used for prediction, the 
models are calibrated to ensure the results in the base year match the flows and other 
aggregate statistics available on service workers and their trips. 

8. Conclusions and further research 

This paper has described the estimation and results of a model system for LCV service trips 
in the Sydney GMA. These results suggest that policies that change the generalised costs, 
and by extension the types of tours made by service workers, are likely to change how service 
workers make trips around a metropolitan area. In particular, the results show that an increase 
in generalised cost (or travel time) is likely to lead to service workers first reorganising their 
tours such that they change the order of their stops (perhaps to maximise efficiency), and if 
generalised costs increase above a certain threshold, to then change the type of tours they 
make. However, although the models presented here provide evidence of the likely effects of 
policies on service trips, they would benefit from including more firm-level covariates as 
previous studies have shown this to have an effect on the types of trips made (Hebes et al., 
2013). Nonetheless, these models provide a good basis from which the likely behavioural 
responses of light commercial vehicle users can be modelled separately but incorporated into 
a larger model system encompassing both passenger and freight models. 
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